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Introduction.
The classical renewal theory deals with the asymptotic properties of the solutions to the renewal equation

where  is the function to be found,  is given function, and  is a given probability distribution. The classical renewal theorems describe the asymptotic properties of convolutions

where  is the potential of a homogeneous critical kernel , which is an ordinary probability distribution. 
 The basic statements of the classical renewal theory can be extended to the so-called Markov renewal equation

where  is a given phase space,  is so-called semi-Markov kernel,  is a given function of , and , and  is the function to be found. Its solution is the convolution

where  is the potential of the semi-homogeneous kernel .
Generally, the renewal theory has wide range of applications in mathematical practice. Markov renewal theorems are an analytical tool for studying the limiting behavior of Markov and related processes, including semi-Markov and regenerative processes.
Main results.

Let (E,) be a measurable (phase) space with the countably generated σ-algebra .  We will assume, without loss of generality, that σ-algebra  contains all one-point sets. Let us introduce a family of non-negative semi-homogeneous [3] kernels which depend on a small parameter .
Consider the Markov renewal equation

where  is a given nonnegative +-measurable function,  is the function to be found, + is the Borel σ-algebra on R+. 
Next, we impose a number of restrictions. Let's assume that the kernels  for all   converge to a probabilistic right-continuous function  which measurably depends on all in that sens        

for an arbitrary continuous bounded function . It follows that for all  	
                        
where  is the basis of the kernel , that is 
         Denote the basis of the kernel  by  and let
                         
Suppose there exists a function  and a kernel  on (E,) such that for all  
             

For convenience, we put . Note that based on (5) and (6) for all  

Let's demand that 

We will assume that

From this, in particular, it follows that

Denote by  and finally assume

W. Feller introduced the very important notion of direct Riemann integrability.
Namely, a family of functions on , that depend on a small parameter  is called directly Riemann-integrable if the series 


Under these conditions, the improper integral

is the limit of the integral sums constructed for a direct partition (hence the name) of the semi-axis  uniformly on for all  that is

where , in contrast to the improper Riemann integral as limit of integrals over finite intervals.
That is why such a function  is called directly Riemann-integrable.
The class of directly integrable functions is sufficiently large although smaller than the class of all absolutely integrable functions.  In particular, it contains all monotone bounded integrable functions. But what is of fundamental importance is that this class is closed with respect to convolution with any finite non-negative measure. Particularly, if a function is directly Riemann-integrable and  is a finite non-negative measure, then the function

is also directly Riemann-integrable.
Let the distribution function be non-lattice for all   and there be a limit 


Each kernel  naturally generates a linear operator  that operates in Banach space   bounded -measurable function   with a norm  by a formula

Denote by  and  the operators corresponding to the kernels  and

Thus we have proved the following theorem.
Theorem.  Let in conditions (2), (5), (6), (7), (8), (9),(10),(11),(12) for all  the probability distribution be non-lattice, then

for all .
Conclusion.
The asymptotics of the solution of the Markov renewal equation when the basis  of the kernel close to the singular kernel  on a given measurable phase space (E,) was studied in [2].The main result of that study was formulated in the form of a theorem. At the same time, severe restrictions were imposed. Uniform convergence on  was required. In this paper, we prove a similar statement under weaker assumptions, namely, it is sufficient that the conditions of the theorem are satisfied for all . For this, a completely different idea of proof is used. 
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